Rechnen in Restklassenringen mit Anwendungen in der Kryptografie

Bonusvorlesung zum Praktikum Wissenschaftswelt Mathematik 2012

24.4.+8.5.2013, Edith-Stein-Schule, Prof. Dr. Martin Ziegler, FB Mathematik der TU Darmstadt

Definition 1 *Sei* $(R, +, \cdot, 0, 1)$ *ein kommutativer Ring.*

- i) $r \in R$ heißt Nullteiler, wenn es $s \in R$ gibt mit $s \neq 0$ aber $r \cdot s = 0$.
- ii) $r \in R$ heißt Einheit von (oder invertierbar in) R, wenn es $s \in R$ gibt mit $r \cdot s = 1$. s ist dann invers zu r. R^{\times} bezeichnet die Menge der Einheiten von R.

Beispiel 2 *i)* 0 ist stets Nullteiler.

- *ii)* Was sind die Nullteiler von \mathbb{Z} ?
- iii) Was sind die Einheiten von \mathbb{Z} ?
- *iv)* Wie sieht es aus bei \mathbb{Q} , \mathbb{R} , \mathbb{C} ?

Lemma 3 i) Ein Nullteiler ist keine Einheit.

- ii) Das Produkt zweier Einheiten ist eine Einheit: (R^{\times}, \cdot) bildet eine Gruppe.
- *iii)* Für $a \in R^{\times}$ gilt: $a \cdot x = a \cdot y \Rightarrow x = y$.
- iv) Jedes Ringelement besitzt höchstens ein Inverses.
- *v)* Ist R endlich und $x \in R^{\times}$, so ist $\pi : R \ni r \mapsto x \cdot r \in R$ eine Permutation.

Theorem 4 (Euler). *Ist R endlicher kommutativer Ring und* $x \in R^{\times}$, *so gilt* $x^{|R^{\times}|} = 1$.

- **Definition 5** i) Für ganze Zahlen a,b schreibe "a|b" (gesprochen "a teilt b" oder "b ist Vielfaches von a") wenn gilt: $\exists c \in \mathbb{Z} : b = a \cdot c$.
- ii) r heißt Rest bei Division von a durch b (" $r = a \mod b$ ") wenn gilt $0 \le r < b$ und $\exists c : a = b \cdot c + r$.
- iii) $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ mit Addition und Multiplikation $\mod n$ heißt Restklassenring modulo n.
- iv) g > 0 heißt größter gemeinsamter Teiler von a und b ("g = ggT(a,b)"), wenn

$$g|a \wedge g|b \wedge (\forall c: c|a \wedge c|b \Rightarrow c|g)$$
.

Beispiel 6 *i*) 6|7182, 6|7410

- ii) 7182 mod 228 = 114
- *iii*) $5^{16} \mod 17 = 1$
- *iv*) $3|a_0+10\cdot a_1+100\cdot a_2+\cdots+10^n\cdot a_n$ \Leftrightarrow $3|a_0+a_1+a_2+\cdots+a_n$
- iv) ggT(91686, 19362) = 42
- v) $6 = ggT(4812, 2430) = 301 \cdot 2430 152 \cdot 4812$

Lemma 7 i) $a|b \Rightarrow a \cdot c|b \cdot c$.

- ii) $z|x \wedge z|y \Rightarrow z|a \cdot x + b \cdot y$.
- iii) Es gilt $(x+y) \mod z = ((x \mod z) + (y \mod z)) \mod z$ und $(x \cdot y) \mod z = ((x \mod z) \cdot (y \mod z)) \mod z$.
- iv) Für p Primzahl und $k \in \mathbb{N}$ gilt: $p \mid \binom{p}{k}$.
- $v) ggT(a, c \cdot a) = a.$
- $vi) \operatorname{ggT}(b,a) = \operatorname{ggT}(a,b) = \operatorname{ggT}(a-q \cdot b,b).$
- *vii*) $\forall a, b \in \mathbb{Z} \exists x, y \in \mathbb{Z} : ggT(a,b) = x \cdot a + y \cdot b$.

Theorem 8. i) x ist Einheit in \mathbb{Z}_n wenn ggT(x,n) = 1, andernfalls ist x Nullteiler.

- ii) In \mathbb{Z}_n besitzt jedes $x \neq 0$ ein Inverses genau dann, wenn n Primzahl ist.
- iii) Sind p,q verschiedene Primzahlen, so gilt $|\mathbb{Z}_{p,q}^{\times}| = (p-1) \cdot (q-1)$.
- iv) Für p,q wie in iii) und $0 \le m und <math>d,e$ mit $d \cdot e = 1 \mod (p-1) \cdot (q-1)$ gilt: $m^{d \cdot e} = m \mod (pq)$.

Algorithmus 9 (Rivest/Shamir/Adleman 1973)

Schlüsselpaargenerierung: Wähle verschiedene Primzahlen p,q (mit typischerweise um die tausend Binärstellen) sowie $e \in \mathbb{N}$ teilerfremd zu $(p-1) \cdot (q-1)$. Veröffentliche $p \cdot q$ und e, halte $p,q,(p-1) \cdot (q-1)$ sowie d geheim, für $d = e^1 \mod (p-1) \cdot (q-1)$ gemäß Theorem 8a).

Verschlüsselung: Eine Zahl 1 < m < pq wird verschlüsselt als $\hat{m} := m^e \mod pq$.

Entschlüsselung: Die Zahl \hat{m} wird entschlüsselt als $m = \hat{m}^d \mod pq$.

Signieren: Eine Zahl $1 < m < p \cdot q$ wird signiert als $\tilde{m} := m^d \mod pq$.

Praktikum Wissenschaftswelt Mathematik 2012

Rechnen in Restklassenringen mit Anwendungen in der Kryptografie, 24.April + 8.Mai 2013

AUFGABEN:

- i) Geben Sie die Multiplikationstabelle (Verknüpfungstafel bzgl. \times) an für \mathbb{Z}_6 .
- ii) Lesen Sie die Nullteiler von \mathbb{Z}_6 ab und für jedes andere Element sein Inverses. Überprüfen Sie Lemma 3 v) am Beispiel $R = \mathbb{Z}_6$.
- iii*) Verifizieren Sie, dass die Menge $\{0,1,\alpha,\beta\}$ mit den folgenden Verknüpfungen einen kommutativen Ring bildet, in dem jedes Element $\neq 0$ invertierbar ist:

- iv) Welches sind die invertierbaren Elemente von \mathbb{Z}_{17} , von \mathbb{Z}_{18} und von \mathbb{Z}_{256} ?
- v) Berechnen Sie die Inverse von 5 in \mathbb{Z}_{18} und jene von 111 in \mathbb{Z}_{256} .
- vi) Berechnen Sie die Wertetabelle von $(2-X+4X^2+X^3)/X$ in \mathbb{Z}_5 .
- vii) Beweisen Sie die schöne Formel $(x+y)^p = x^p + y^p$ in \mathbb{Z}_p für p Primzahl. (Hinweis: benutzen Sie den binomischen Lehrsatz und Lemma 7 iv)
- viii) Wie kann man einer Binärzahl leicht ansehen, ob sie durch 3 teilbar ist oder nicht?
 - xi) Berechnen Sie $x^2, x^4, x^8, x^{16}, x^{32}, x^{64}$ und x^{75} in \mathbb{Z}_{18} für x := 13. (Tipp: 75 = 1 + 2 + 8 + 64)
 - x) Berechnen Sie die Wertetabelle von $1 + x + x^2 + x^3 + x^4 + x^5 + x^6$ in \mathbb{Z}_7 .
 - xi) Berechnen Sie das Produkt der Polynome $2X^2 + 3X + 4$ und 3X + 3 über \mathbb{Z}_5 .
- xii) Was ist der Rest des Polynoms $X^3 + X + 1 \in \mathbb{Z}_5[X]$ bei Division durch $3X^2 + 2X + 4 \in \mathbb{Z}_5[X]$?
- xiii) Seien $a:=X^3+X+1\in\mathbb{Z}_5[X]$ und $b:=3X^2+2X+4\in\mathbb{Z}_5[X]$. Bestimmen Sie Polynome $p,q\in\mathbb{Z}_5[X]$ mit $a\cdot p+b\cdot q=2$ in $\mathbb{Z}_5[X]$. Finden Sie auch p',q' mit $a\cdot p'+b\cdot q'=1$?
- xiv) Ein öffentlicher Schlüssel laute (3953, 1337). Verschlüsseln Sie damit die Nachricht m = 42.
- xv) Entschlüsseln Sie mit dem öffentlichen Schlüssel aus xiv) die signierte Nachricht $\tilde{m} = 3073$.
- xvi) Können Sie den privaten Schlüssel knacken? Wer es schafft, sende die Antwort per Email an ziegler@mathematik.tu-darmstadt.de): kodiert mit meinem öffentlichen PGP-Schlüssel, fingerprint AF37 ECD4 AEBE 3D4E 76EB 4445 227F 4D27 4A4B E6FE.

^{*}Fleißaufgabe, ggf. besser am Computer durchführen